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Abstract 

The derivation of stiffness modulus of Lightweight Cemented Soils (LWCS) through a micromechanical approach has 

been performed by implementing analytical formulae founded on the Mean-Field Eshelby-based Homogenization 

schemes. For the purpose of homogenization, the artificial porosity induced by the addition of foam has been evaluated 

by means of X-Ray micro-CT scans. The bulk modulus of the cemented matrix has been derived by mechanical tests 

performed on LWCS samples. The homogenized stiffness modulus has been computed for different curing times and the 

results are in agreement with experimental tests.  

 

 

1. Composite materials and the concept of R.V.E 

 

The homogenization theory aims at estimating the effective behavior of composite materials. The main interest 

of the approach lies on the possibility to use the obtained effective behavior to perform computations at the 

scale of the homogeneous structure by reasoning on the so-defined homogenized structure instead over the 

original heterogeneous one [1]. 

 

In many materials of interest, the microstructure can be considered as Statistically Homogeneous (S.H), i.e., 

the statistical descriptors of the geometrical arrangement do not depend on the position they are evaluated at. 

For such systems, it makes sense to define volume averaged properties, which are then independent of the size 

and position of the volume element considered, provided it is sufficiently large. A volume element that contains 

all the necessary information for the statistical description of a given microstructure is called Reference 

Volume Element (R.V.E.) [2].  

 

The R.V.E. must comply with two conditions: 

 

• to be elementary, which means that it is small enough compared to the size L of the structure; 
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• to be representative, that is to be large enough compared to the size d characterizing the heterogeneity 

of the microstructure [3]. 

 

In general, quasi-homogeneous sub-domains with known physical quantities (such as volume fraction, elastic 

or strength properties) are reasonably defined within the R.V.E., in order to represent the microstructure within 

each R.V.E., which is complicated to describe in detail. These sub-domains are referred to as material phases. 

The central objective of continuum micromechanics is to estimate the mechanical properties of the material 

defined on the R.V.E. from the aforementioned phase properties [1]. 

  

One strategy for modeling the mechanical behavior of microstructured materials consists in approximating the 

actual stress and strain fields by phase-wise constant fields, the statistics of the microgeometry being accounted 

for in terms of simple descriptors such as the phase volume fractions and the overall symmetry. This modeling 

philosophy leads to Mean Field estimates, Hashin-Shtrikman estimates, and Hashin-Shtrikman-type bounds, 

which in their basic forms provide analytical results for the linear behavior of inhomogeneous materials [4]. 

 

2. Mean-Field approaches 

 

The more sophisticated Mean-Field Homogenizations (M.F.H) are based on Eshelby's solution. In the mean 

field methods, well adapted for heterogeneous materials with a random microstructure distribution, average 

fields are considered for each phase in the material [5]. M.F.H. is used to model composites with one matrix 

phase and one or multiple inclusion phases with uniform properties for each phase. These approaches require 

only partial information of the microstructure including the volume fraction, aspect ratio and the orientation 

of the inclusions [6].  

In particular, mean-field approaches (M.F.As) approximate the micro-fields within each constituent by their 

volume phase averages 𝜺𝜇
(𝑝)

 and 𝝈𝜇
(𝑝)

, i.e., uniform strain and stress fields on each phase are used. The main 

geometrical characteristics of each phase, given by the volume fraction of each constituent, phase topology, 

aspect ratio of inclusions, etc., are considered by using statistical descriptors. In M.F.As the relations between 

the micro- and macro-fields are given by the following expressions (the dependence on the macroscopic 

coordinate 𝒙 is omitted for clarity) [7]: 

𝜺𝜇
(𝑝)

= 𝑨
(𝑝)

: 𝜺 

𝝈𝜇
(𝑝)

= 𝑩
(𝑝)

: 𝝈 

Equation 1 

and the homogenization relations can be written as: 

𝜺𝜇
(𝑝)

=
1

𝑉𝜇
(𝑝)

∫ 𝜺𝜇 (𝒚, 𝑡) 𝑑𝑉  𝑤𝑖𝑡ℎ 𝜺𝝁 = ∑ 𝑐(𝑝)𝜺𝜇
(𝑝)

𝑝𝛺𝜇
(𝑝)

 

𝝈𝜇
(𝑝)

=
1

𝑉𝜇
(𝑝)

∫ 𝝈𝝁 (𝒚, 𝑡) 𝑑𝑉  𝑤𝑖𝑡ℎ 𝝈𝝁 = ∑ 𝑐(𝑝)𝝈𝜇
(𝑝)

𝑝𝛺𝜇
(𝑝)

 

Equation 2 
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Where p denotes a given phase of the material, V(p) is the volume occupied by this phase,  𝑐(𝑝) = 𝑉(𝑝)/ ∑ 𝑉(𝑘)
𝑁  

is the volume fraction of the phase (it is easy to see that ∑ 𝑐(𝑝) = 1)𝑁  and 𝒚 is the microscopic coordinate. It 

must be noticed that the phase concentration tensors 𝑨
(𝑝)

 and 𝑩
(𝑝)

 used in M.F.As are not functions of the 

spatial coordinates of the microstructure and they are considered to be constant over each phase.  

In a first step, a local problem for a single inclusion is solved in order to obtain approximations for the local 

field behavior as was derived by Eshelby for elastic fields of an ellipsoidal inclusion. The second step consists 

on averaging the local fields to obtain the global effective properties [7]. 

For the generic phase p, 𝑨
(𝑝)

 is a fourth-order localization or concentration tensor of the p-phase (as it 

concentrates a macroscopic quantity prescribed at the boundary into a microscopic phase).  

The most common one that applies best to the morphology encountered at all different levels of cement-based 

materials, is the Eshelbian-type ellipsoidal inclusion embedded in a reference medium for which an estimate 

𝑨
(𝑝)𝑒𝑠𝑡

 of the localization tensor is given in the form [8]: 

𝑨
(𝑝)𝑒𝑠𝑡

= [𝑰 + 𝑺𝒑
𝑬𝒔𝒉: (𝑪𝟎

−𝟏: 𝑪𝒑 − 𝑰)]

−1

: 〈[𝑰 + 𝑺𝒑
𝑬𝒔𝒉: (𝑪𝟎

−𝟏: 𝑪𝒑 − 𝑰)]

−1

〉𝑉
−1 

Equation 3 

Where 𝑪𝟎 is the tensor of elastic moduli of the reference medium, 𝑪𝒑 is the fourth-order elasticity tensor of 

phase p=1,…,n, and 𝑺𝒑
𝑬𝒔𝒉 is the Eshelby tensor of phase p, which depends on 𝑪𝟎, the geometry, and the 

orientation of phase p. Given the random microstructure of cement-based materials, it is naturally to consider 

all phases as isotropic and the inclusions as spherical. The first assumption implies the isotropy of the local 

and the reference medium, that is [8]: 

𝑪𝒑 = 3𝑘𝑝𝑱 + 2𝜇𝑝𝑲 

𝑪𝟎 = 3𝑘0𝑱 + 2𝜇0𝑲 

Equation 4 

Where kp, μp, k0 and μ0 are the bulk moduli and the shear moduli of phase r and of the reference medium, 

respectively; Jijkl = (1/3) δijδkl is the volumetric part of the fourth-order unit tensor 𝑰, and 𝑲 = 𝑰 − 𝑱 is the 

deviatoric part. 

For spheroidal inclusions (i.e., ellipsoids of rotation) in an isotropic elastic matrix, 𝑺𝒑
𝑬𝒔𝒉  can be evaluated 

analytically and depends only on the Poisson’s ratio of the homogeneous material (or, in the case of 

inhomogeneous inclusions, on the Poisson’s ratio of the matrix) and on the aspect ratio a of the inclusion. 

Therefore, the second assumption of spherical inclusions implies the following form of the Eshelby tensor [9]: 

𝑺𝟎 𝑬𝒔𝒉 = 𝛼0𝑱 + 𝛽0𝑲     𝑰 = 𝑱 + 𝑲   

Equation 5 
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Where: 

𝛼0
𝑒𝑠𝑡 =

3𝑘0

3𝑘0 + 4𝜇0
   𝛽0

𝑒𝑠𝑡 =
6(𝑘0 + 2𝜇0)

5(3𝑘0 + 4𝜇0)
 

Equation 6 

With 𝜇0 and 𝑘0 the shear moduli and the bulk moduli of the reference medium, respectively. Notice that tensor 

itself does not depend on the radius of the sphere [9]. 

To homogenize the local material properties, constitutive relations are required for the different phases, 

together with the volume-averaging relation linking the microscopic and the macroscopic stress [8]:  

𝝈 = 〈𝝈𝝁 (𝒚)〉𝑽 

Equation 7 

Use in Equation 7 of a linear elastic constitutive law for each microscopic phase, i.e., of the [8]: 

𝝈𝜇
(𝑝)

= 𝑪𝒑: 𝜺𝜇
(𝑝)

 

Equation 8 

together with the strain localization condition (Equation 1), delivers the following linear homogenization 

formula for the macroscopic (or homogenized) elasticity tensor 𝑪𝒉𝒐𝒎 [8]: 

𝝈 = 𝑪𝒉𝒐𝒎: 𝜺 

Equation 9 

𝑪𝒉𝒐𝒎 = 〈𝑪𝒑: 𝑨𝒑〉𝑽 = ∑ 𝑐𝑝𝑪𝒑:

𝒓

𝑨𝒑 

Equation 10 

While Equation 10 is an exact theoretical definition of 𝑪𝒉𝒐𝒎, the practical determination of 𝑪𝒉𝒐𝒎 is generally 

based on estimates of the localization tensor for each phase 𝑨𝒑
𝒆𝒔𝒕. It is readily understood that the quality of 

the homogenization result is intimately related to the quality of the localization condition. In a refined analysis, 

considering the Eshelbian-type strain localization (Equation 3), the following estimate of the macroscopic (or 

homogenized) elasticity tensor 𝑪𝒉𝒐𝒎
𝒆𝒔𝒕 is obtained [8]:  

𝑪𝒉𝒐𝒎
𝒆𝒔𝒕 = 〈𝑪𝒑: [𝑰 + 𝑺𝒑

𝑬𝒔𝒉: (𝑪𝟎
−𝟏: 𝑪𝒑 − 𝑰)]−𝟏〉𝑽 : 〈[𝑰 + 𝑺𝒑

𝑬𝒔𝒉: (𝑪𝟎
−𝟏: 𝑪𝒑 − 𝑰)]−𝟏〉𝑽

−𝟏
 

Equation 11 

Substituting Equation 4-Equation 6 into Equation 11 yields explicit expressions for the homogenized bulk 

modulus and shear modulus [8]: 

𝑪𝒉𝒐𝒎
𝒆𝒔𝒕 = 3𝑘ℎ𝑜𝑚

𝑒𝑠𝑡 𝑱 + 2𝜇ℎ𝑜𝑚
𝑒𝑠𝑡 𝑲 

Equation 12 
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𝑘ℎ𝑜𝑚
𝑒𝑠𝑡 = ∑ 𝑐𝑝𝑘𝑝

𝑟

(1 + 𝛼0
𝑒𝑠𝑡 (

𝑘𝑝

𝑘0
− 1))

−1

× [∑ 𝑐𝑝 (1 + 𝛼0
𝑒𝑠𝑡 (

𝑘𝑝

𝑘0
− 1))

−1

𝑟

]

−1

 

Equation 13 

𝜇ℎ𝑜𝑚
𝑒𝑠𝑡 = ∑ 𝑐𝑝𝜇𝑝

𝑟

(1 + 𝛽0
𝑒𝑠𝑡 (

𝜇𝑝

𝜇0
− 1))

−1

× [∑ 𝑐𝑝 (1 + 𝛽0
𝑒𝑠𝑡 (

𝜇𝑝

𝜇0
− 1))

−1

𝑟

]

−1

 

Equation 14 

To close the upscaling procedure, we need to choose the appropriate reference medium, in which the inclusions 

are embedded. The Mori–Tanaka scheme (M.T.), in which the matrix phase is chosen as reference medium, 

i.e., 𝑪𝟎 = 𝑪𝒎, is appropriate for materials that exhibit a strong matrix-inclusion morphology. This scheme is 

chosen for the two-phase spherical inclusion composites, for which Equation 13 and Equation 14 reduce to 

[8]: 

𝑘ℎ𝑜𝑚
𝑒𝑠𝑡

𝑘𝑚
= 1 + 𝑐𝐼

𝑘𝐼
𝑘𝑚

⁄ − 1

1 + 𝛼𝑚
𝑒𝑠𝑡(1 − 𝑐𝐼) (

𝑘𝐼
𝑘𝑚

⁄ − 1)
 

Equation 15 

𝜇ℎ𝑜𝑚
𝑒𝑠𝑡

𝜇𝑚
= 1 + 𝑐𝐼

𝜇𝐼 − 𝜇𝑚

1 + 𝛽𝑚
𝑒𝑠𝑡(1 − 𝑐𝐼)(

𝜇𝐼
𝜇𝑚

⁄ − 1)
 

Equation 16 

𝛼0
𝑒𝑠𝑡 ≡ 𝛼𝑚

𝑒𝑠𝑡 =
3𝑘𝑚

3𝑘𝑚 + 4𝜇𝑚
 𝑎𝑛𝑑 𝛽0

𝑒𝑠𝑡 ≡ 𝛽𝑚
𝑒𝑠𝑡 =

6(𝑘𝑚 + 2𝜇𝑚)

5(3𝑘𝑚 + 4𝜇𝑚)
 

Equation 17 

The homogenized Young’s modulus and Poisson’s ratio are evaluated from [8]: 

𝐸ℎ𝑜𝑚
𝑒𝑠𝑡 =

9𝑘ℎ𝑜𝑚
𝑒𝑠𝑡 𝜇ℎ𝑜𝑚

𝑒𝑠𝑡

3𝑘ℎ𝑜𝑚
𝑒𝑠𝑡 + 𝜇ℎ𝑜𝑚

𝑒𝑠𝑡  𝑎𝑛𝑑 𝜈ℎ𝑜𝑚
𝑒𝑠𝑡 =

3𝑘ℎ𝑜𝑚
𝑒𝑠𝑡 − 2𝜇ℎ𝑜𝑚

𝑒𝑠𝑡

6𝑘ℎ𝑜𝑚
𝑒𝑠𝑡 + 2𝜇ℎ𝑜𝑚

𝑒𝑠𝑡  

Equation 18 

Let’s consider a R.V.E. made of an isotropic linear elastic matrix having a Poisson’s ratio vm of 0.2 and 

containing stress free spherical cavities having a volume fraction or a macroporosity p. Assume that the overall 

effective behavior of this porous material is isotropic. By setting 𝑘𝑖 = 𝜇𝑖 = 0 and using the Mori-Tanaka 

scheme, the effective normalized bulk and shear modulus are therefore given by the same following hyperbolic 

form [10]: 

𝑘𝑀−𝑇
ℎ (𝑝)

𝑘𝑚
=

𝜇𝑀−𝑇
ℎ (𝑝)

𝜇𝑚
=

1 − 𝑝

1 + 𝑝
 

Equation 19 
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3. Results and conclusions 

 

Three different homogenization schemes have been used to compute the homogenized stiffness modulus of 

LWCS samples, i.e., Mori-Tanaka (MT), differential method (DF), dilute method (DI). For each scheme, it has 

been shown that, under the hypothesis 𝑣𝑚 = 0.2, the normalized bulk, shear and Young’s moduli are given by 

the same form depending only on the porosity p. Then, the different models predictions have been compared 

with experimental Young’s modulus, obtained by shear tests and uniaxial and isotropic compression tests. This 

comparison shows that the Mori-Tanaka method is the best homogenization scheme for LWCS. Therefore, the 

whole expressions (i.e., without the hypothesis 𝑣𝑚 = 0.2) of Mori-Tanaka scheme have been employed to 

compute the homogenized stiffness modulus for different curing time of the LWCS samples. 

 

 

Figure 1: Mean Field approaches vs experimental results. 

 

 

Figure 2: MT-schemes vs experimental results. 
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